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ABSTRACT  

The pressuremeter test is typically interpreted using a linear elasto-plastic model, but soil permeability and saturation 

levels can complicate the interpretation, particularly regarding whether the modulus obtained is effective or apparent. 

Advancements in the ARSCOP project allow for calculating an effective modulus in nearly saturated fine soils, where 

the skeleton is linear and the pore fluid is a compressible water-air mixture. A non-linear elastic model has been 

developed, which accounts for modulus variation along radius around the probe. This model links pore pressure 

generation during the test to the soil’s non-linear elasticity. In fine soils with compressible fluids, pore pressure dissipation 

follows a one-dimensional radial consolidation process, similar to one-dimensional vertical consolidation in oedometers. 

A new theoretical approach introduces the pressuremeter consolidation coefficient (ch), which depends on the soil’s elastic 

modulus and horizontal permeability, and has been validated through tests on Bransley clay. 

RESUME 

L’essai pressiométrique est habituellement interprété à l’aide d’un modèle élasto-plastique linéaire, mais cette approche 

peut être inexacte selon la perméabilité et le degré de saturation du sol, qui influencent la réponse drainée ou non drainée. 

Il devient alors difficile de distinguer entre un module effectif et apparent. Dans le cadre du projet ARSCOP, des progrès 

ont permis de calculer un module effectif pour les sols fins quasi saturés, en modélisant un fluide interstitiel compressible 

(mélange eau-air). Ce modèle permet également d’estimer la pression interstitielle générée lors de l’essai. Une nouvelle 

approche plus réaliste a été développée, prenant en compte le comportement élastique non linéaire du sol et la variation 

de la déformation autour de la sonde. Il a été démontré que la génération de pression interstitielle est liée à cette non-

linéarité. Dans les sols fins à fluide compressible, la dissipation de la pression suit une consolidation unidimensionnelle 

radiale, similaire à celle verticale observée dans les œdomètres. Un coefficient de consolidation pressiométrique 

horizontal (ch) a été introduit, validé par des tests sur l’argile de Bransley. 
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1. Introduction 

The pressuremeter test is often interpreted by 

considering the soil as linearly elasto-plastic. However, 

depending on the soil's permeability and its degree of 

saturation, the soil’s response may be drained or 

undrained. Consequently, from a theoretical standpoint, 

it is sometimes difficult to determine whether the 

modulus measured during the pressuremeter test is an 

effective modulus or an apparent one. As part of the 

ARSCOP project, an initial milestone has been reached, 

enabling the calculation of the effective modulus for a 

nearly saturated fine soil, in which the skeleton exhibits 

a linear response and the pore fluid is a compressible 

water-air mixture (Boutonnier 2007; Mahmutovic 2016; 

Boutonnier et al. 2019 ). This first step makes it possible 

to compute an effective modulus and estimate the pore 

pressure generated during the pressuremeter test when 

the boundaries move. 

A more realistic approach has since been developed, 

accounting for the non-linearity of the skeleton’s 

response (a G/Gmax law as a function of strain), with 

strain being maximal near the probe and tending toward 

zero at infinity (Monnet and Boutonnier 2025). 

In the past, several studies have addressed the 

phenomenon of pore pressure generation (Clarke et al. 

1979; Alzubaidi, 2019), but the occurrence of this pore 

pressure during the pressuremeter test has long been 

debated. Recently, we demonstrated that the appearance 

of pore pressure is linked to the non-linear elasticity of 

the soil (Monnet et al. 2021). For fine soils with a 

compressible fluid, pore pressure dissipation around the 

probe results in a 1D radial consolidation process 

analogous to 1D vertical  consolidation in an oedometer. 

Previous studies mainly approached this phenomenon 

experimentally (Baguelin et al. 1972), analytically 

without considering pore pressure (Baguelin et al. 1976), 

around piles (Niarchos 2012), with only a linear elastic  

analysis (Clarke et al. 1979) or without distinguishing 



 

2 

 

between pore pressure and effective stresses (Gibson and 

Anderson 1961; Hughes and Whittle 2023). The 

evolution of pore pressure and total stress is not described 

along the radius. 

Consolidation under pressuremeter loading is 

governed by the pressuremeter consolidation coefficient, 

ch (related to the elastic modulus and horizontal 

permeability kh), as well as time. It must be addressed by 

separating the action of the pore water from that of the 

solid skeleton. This study fully formalizes the 

mechanism, explicitly defines the effective stress state 

along the radius, and validates the solution using 

measurements conducted on Bransley clay (Anderson et 

al. 1987). 

2. Theory – assumptions 

The following assumptions are used in this study 

2.1. Coordinates 

 

 
Figure 1: the pressuremeter used (Clarke et al. 1979) 

 

In the case of the pressuremeter (Fig. 1), where a total 

pressure p is applied to the borehole wall at radius a,  the 

pore pressure uw is measured at the borehole wall. The 

study is conducted in cylindrical coordinates. 

2.2. Mass conservation 

We note 𝜀𝑣 the volume variation of the element of 

soil. 𝑉⃗  is the speed of the interstitial fluid which moves 

only on the radial direction because V and Vz are null. 

𝝏𝜺𝒗

𝝏𝒕
= −

𝟏

𝒓
.
𝝏(𝒓. 𝑽𝒓)

𝝏𝒓
=

𝟏

𝒓
. 𝑽𝒓 +

𝒅(𝑽𝒓)

𝒅𝒓
 

(1) 

2.3. Darcy Law 

The Darcy law is applied, which gives a relation 

between the water speed Vr and the variation of the pore 

pressure uw :  with k soil permeability; 𝛾𝑤 the bulk 

density of the interstitial fluid; 𝑢𝑤 the pore pressure 

𝑽𝒓 = −[𝒌𝒉 𝜸𝒘⁄ ]. [𝝏𝒖𝒘 𝝏𝒓⁄ ] (2) 

𝝏𝜺𝒗

𝝏𝒕
=

𝟏

𝒓
.
𝝏(𝒓. 𝑽𝒓)

𝝏𝒓
=

𝒌𝒉

𝜸𝒘

.
𝟏

𝒓
.
𝝏(𝒓. 𝒖𝒘)

𝝏𝒓
 

(3) 

2.4. Relation between volume variation and 

pore pressure : 

Previous works had shown the interstitial fluid is 

composed of water and air bubbles even into soil that is 

commonly considered as saturated (Monnet and 

Boutonnier 2024). For this compressible fluid, the 

volume variation is linked to the volume variation by   𝐜𝐟 

the compressibility coefficient of the mix water + air; n 

is the porosity of the soil and assumed constant. 

𝜺𝒗  = −[𝐜𝐟. 𝐧. 𝐝𝐮𝐰] 𝒅𝒕⁄  (4) 

2.5. Terzaghi condition: 

The total pressure p is applied on the borehole wall for 

the radius a; it is considered as a constant and 

independent of the time. This implies that the total 

pressure in any radius value is also constant considering 

time. The Terzaghi relation is used : 

𝝈 = 𝛔′ + 𝐮𝒘 = 𝑪𝒕𝒆 (5) 

𝛛𝛔′ 𝝏𝒕⁄ = −𝛛𝐮𝒘 𝝏𝒕⁄  (6) 

2.6. Non-saturation condition: 

It is assumed that the soil is in D3 state (Boutonnier 

2007), i.e partial saturation with a mixture of water and 

air; this leads to ch the apparent consolidation coefficient, 

with cf the compressibility coefficient of the mix soil + 

fluid + air  

𝒄ℎ = 𝒌𝒉 [𝜸𝒘. 𝐜𝐟. 𝐧].⁄  (7) 

2.7. Small deformation 

To simplify the theory, it is assumed small 

deformations 

2.8. Non-linear elasticity 

A non-linear elasticity is assumed Eq. (8) (Figure 2) 

so that the apparition of the pore pressure is possible 

(Monnet and Boutonnier 2024)  

𝐆𝐬 𝑮𝒎𝒂𝒙⁄ = 𝟏 [𝟏 + 𝟎. 𝟑𝟖𝟓. 𝜸 𝜸𝟎.𝟕⁄ ]⁄  (8) 

 
Figure 2: Theory : Evolution of the shear and secant modulus 

assumed (Plaxis 2012) 
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3. Constant Bpres theory – developments 

3.1. Relation between total and effective stress 

Following (Skempton 1954) we consider a linear 

relation Eq. (9) between pore pressure and total pressure, 

as observed on pressuremeter performed with cycles into 

clay (Figure 3). This linearity implies a linear relation 

between total and effective stress Eq. (10) with Bpres the 

Skempton coefficient applied to the pressuremeter; G‘s is 

the secant shear modulus. The right-hand side of Eq. (9) 

can  be derived as follows. 

𝜹𝒖𝒘𝒊 𝜹𝝈𝒓⁄ = 𝐁𝒑𝒓𝒆𝒔 = 𝟏 (𝟏 + 𝒄𝒇. 𝒏. 𝑮𝒔
′ )⁄  (9) 

𝜹𝝈𝒓
′ = 𝜹𝝈𝒓 (𝟏 − 𝑩𝒑𝒓𝒆𝒔) (10) 

 

 

Figure 3: Experience : linear relation between the measured 

pore pressure and the total pressure – pressuremeter test in 

London clay at 20,8m depth (Monnet and Boutonnier 2024) 

 

3.1. Equilibrium condition and resolution  

The equilibrium condition of the unit volume (Figure 4)  

is governed by the following equations: 

𝝈𝒓−𝝈𝜽 + 𝒓.
𝒅𝝈𝒓

𝒅𝒓
= 𝟎 

(11) 

𝝈′𝒓−𝝈′𝜽 + 𝒓.
𝒅𝝈′𝒓
𝒅𝒓

+ 𝒓.
𝒅𝒖𝒘

𝒅𝒓
= 𝟎 

(12) 

Eq. (11) gives the equilibrium of the unit volume in total 

stress but if we consider the pore pressure, it becomes Eq. 

(12) in effective stress. 

 
Figure 4: Equilibrium of the unit volume 

 

Shear stress differences can be expressed in terms of 

total or effective stress: 

𝝈𝒓−𝝈𝜽 = 𝝈𝒓′−𝝈𝜽′ (13) 

Considering the symetry Eq. (14) between the effective 

stresses and the initial effective pressure at rest (Monnet 

and Boutonnier 2024), shearing can be written along (16) 

𝝈𝒓
′ − 𝒑𝟎′ = 𝒑𝟎′−𝝈𝜽′ (14) 

𝝈𝜽
′ = 𝟐.𝒑𝟎

′ − 𝝈𝒓
′  (15) 

𝝈𝒓−𝝈𝜽 = 𝝈𝒓
′ −𝝈𝜽′ = 𝟐. 𝝈𝒓

′ − 𝟐. 𝒑𝟎
′  (16) 

Using the linear relation between pore pressure and 

total stresss (Skempton 1954) and the experimental 

relation (Figure 3), Eq. (17) and Eq. (18) are written;. 

𝒅𝒖𝒘 = 𝑩𝒑. 𝒅𝝈𝒓 (17) 

𝒖𝒘 = 𝑩𝒑𝒓𝒆𝒔. (𝛔𝒓 − 𝒑𝟎) + 𝒖𝒘𝟎 𝒑𝒐𝒖𝒓 𝒑 ≥ 𝒑𝟎 (18) 

using the Terzaghi relation Eq. (5) and the  symetry of 

the effective stress versus p’0 the effective horizontal 

pressure at rest  (Monnet and Boutonnier 2024). The 

shearing becomes Eq. (19). Introducing Eq. (19) into  the 

equilibrium Eq. (12) we find a First-order differential Eq. 

(21) which becomes Eq. (22). 

𝝈𝒓−𝝈𝜽 = 𝝈𝒓
′ −𝝈𝜽′ = 𝝈𝒓

′ − 𝟐.𝒑𝟎
′ + 𝝈𝒓

′

= 𝟐. 𝝈𝒓
′ − 𝟐. 𝒑𝟎

′  

(19) 

𝐫.
𝐝𝛔𝐫

𝐝𝐫
+ 𝛔′𝐫 + 𝒖𝒘+𝝈′𝐫 − 𝟐. 𝒑′

𝟎
− 𝒖𝒘 = 𝟎 

(20) 

𝐫.
𝐝𝛔𝐫

𝐝𝐫
= −(𝛔′

𝒓 − 𝛔′
𝜽) = −𝟐. (𝛔′

𝒓 − 𝒑′
𝟎
)

= −𝟐. (𝝈𝒓 − 𝒑𝟎)(𝟏

− 𝑩𝒑𝒓𝒆𝒔) 

(21) 

−
𝐝𝛔𝐫

𝟐. (𝝈𝒓 − 𝒑𝟎)(𝟏 − 𝑩𝒑𝒓𝒆𝒔)
=

𝒅𝒓

𝒓
 

(22) 

The solution of Eq. (22) can be found into Eq. (23), 

which allows to know the distribution of the total stress 

Eq. (24) and the pore pressure Eq. ((25) and the effective 

stress Eq. (26) Eq. (27) along the radius 

(𝝈𝒓 − 𝒑𝟎)

(𝒑 − 𝒑𝟎)
= (

𝒂

𝒓
)
[𝟐.(𝟏−𝑩𝒑)]

 
(23) 

𝝈𝒓 = (𝒑 − 𝒑𝟎).
𝒂

𝒓

[𝟐.(𝟏−𝑩𝒑)]

+ 𝒑𝟎 
(24) 

𝒖𝒘. = 𝑩𝒑𝒓𝒆𝒔. (𝛔𝒓 − 𝒑𝑶) + 𝒖𝒘𝟎 (25) 

𝛔′𝒓 = (𝟏 − 𝑩𝒑𝒓𝒆𝒔) [(𝒑 − 𝒑𝟎 ) (
𝒂

𝒓
)
𝟐.(𝟏−𝑩𝒑𝒓𝒆𝒔)

] + 𝒑′
𝟎
 

(26) 

𝛔′
𝜽 = −(𝟏 − 𝑩𝒑𝒓𝒆𝒔) [(𝒑 − 𝒑𝟎 ) (

𝒂

𝒓
)
𝟐.(𝟏−𝑩𝒑𝒓𝒆𝒔)

] + 𝒑′
𝟎
 

(27) 

Please note that Eq. (23) to Eq. (27) are independent 

of the shearing modulus. 

4. Constant Bpres theory – validation 

Validation of Eq. (25) can be performed by 

comparison with the experimental results (Anderson et 

al. 1987) where the measurement of the pore pressure 

was carried out at 3 differents values of the radius. For 

the second test of (Anderson et al. 1987), we found that 

the pore pressure decrease more than the theoretical 

relation; as a consequence we assume for the outer values 
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of the pore pressure a linear variation Eq. (30) of r and 

uw between Ld/2.a and Ld.a where the pore pressure return 

to uw0; Ld is  a parameter of the model which rules the 

extension od the area impacted by the pressuremeter test. 

The outer linear variation of uw is ruled by Eq. (28) with 

the  coefficients A0 and A1  Eq. (29).. 

𝑢𝑤𝑑 = 𝐵𝑝𝑟𝑒𝑠 . [(𝑝 − 𝑝0 ) (
2

𝐿𝑑

)
2.(1−𝐵𝑝𝑟𝑒𝑠)

]

+ 𝑢𝑤0 

(28) 

𝐴1 = −𝟐.
(𝑢𝑤𝑑 − 𝒖𝒘𝟎)

𝑳𝒅. 𝒂
  ;  𝐴0

= 𝒖𝒘𝟎 − 𝐴1. 𝑳𝒅. 𝒂 

(29) 

𝑢𝑤 = 𝑨𝟎 + 𝐴1. 𝑅 (30) 

The comparaison between the theoretical pore pressure 

and the measured one is shown on (Figure 6; Figure 7), 

and the parameters used are in (Table 1). In this analysis 

a linear response of the pore pressure is found versus the 

total pressure applied so that the loading can be 

considered as undrained below 100kPa (Figure 5). All 

results are documented (Monnet and Boutonnier 2025) 

 
Figure 5: Evolution of the pore pressure at the borehole wall 

versus the total pressure applied; Two loading speeds (10 

and 30kPa/Min.) (Anderson et al. 1987) 
 

Table 1 : Parameters used for the validation of the constant Bpres 

theory on the laboratory test (Anderson et al. 1987) 

 p=10kPa/min p=30kPa/min 

uw0 (kPa) 0 0 

Bp 0.59 0.75 

p0 (kPa) 0 0 

Ld 5 5 

 

 

Figure 6: Evolution of the pore pressure along the radius for 

the test with p=10kPa/Min. (Anderson et al. 1987) 

 

Figure 7: Evolution of the pore pressure along the radius for 

the test with p=30kPa/Min. (Anderson et al. 1987) 

5. Consolidation theory – developments 

5.1. Consolidation equation 

Combining Eq. (2) and Eq. (1), we find the 

consolidation Eq. (31) which can be rewritten Eq. (33) 

−𝐜𝐟. 𝐧.
𝐝𝐮𝐰

𝒅𝒕
= −

𝒌𝒉

𝜸𝒘

.
𝟏

𝒓
.
𝝏(𝒓. 𝒖𝒘)

𝝏𝒓
 

(31) 

𝜸𝒘. 𝐜𝐟. 𝐧

𝒌𝒉

.
𝐝𝐮𝐰

𝒅𝒕
=

𝟏

𝒓
.
𝝏(𝒓. 𝒖𝒘)

𝝏𝒓
 

(32) 

𝜸𝒘. 𝐜𝐟. 𝐧

𝒌𝒉

.
𝒅𝒖𝒘̇

𝒅𝒕
=

𝟏

𝑪ℎ

𝒅𝒖𝒘̇

𝒅𝒕
= (

𝒅²𝒖𝒘̇

𝒅𝒓²
+

𝟏

𝒓
.
𝒅𝒖𝒘̇

𝒅𝒓
) (33) 

5.2. Separation of variables 

To solve Eq. (33), we notice that the left part  depends 

of the time and the right part depends on the radius so the 

solution can be written as Eq. (34), and the two parts of 

equation Eq. (33) must be equal to the same constant 

value −𝝀𝟐 Eq. (35): 

𝒖𝒘(𝒓, 𝒕) = 𝑿(𝒓). 𝑻(𝒕) (34) 

𝟏

𝑐ℎ

𝒅𝒖𝒘̇

𝒅𝒕
= (

𝒅²𝒖𝒘̇

𝒅𝒓²
+

𝟏

𝒓
.
𝒅𝒖𝒘̇

𝒅𝒓
) = −𝝀𝟐 (35) 

5.3. Solution depending on time: 

The time part of Eq. (35) is now Eq. (36) and can be 

solved by Eq. (37). The condition of T(t)=1 for t=0 gives 

T0=1. 

𝟏

𝑻(𝒕)
.
𝝏𝑻(𝒕)

𝝏𝒕
= −𝝀𝟐. 𝑐ℎ (36) 

𝑻(𝒕) = 𝑻𝟎. 𝒆𝒙𝒑−𝝀𝒏
𝟐 .𝑐𝒉.𝒕 = 𝒆𝒙𝒑−𝝀𝒏

𝟐 .𝑐𝒉.𝒕 (37) 
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5.4. Solution depending on radius: 

The spatial part of Eq. (35) is now Eq. (38) and can 

transformed multiplying X(r) into Eq. (39). Changing the 

variable into Eq. (40) the equation is rewrite into Eq. (41). 

This latest form is the Bessel equation of order zero. It 

solution is known as Eq. (42) with the Bessel functions 

of first order J0 and Y0, and the constants A and B. 

(
𝟏

𝑿(𝒓)

𝝏²𝑿(𝒓)

𝝏𝒓²
+

𝟏

𝒓.𝑿(𝒓)
.
𝝏𝑿(𝒓)

𝝏𝒓
) = −𝝀𝟐 (38) 

𝝏𝟐𝑿(𝒓)

𝝏𝒓𝟐
+

𝟏

𝒓
.
𝝏𝑿(𝒓)

𝝏𝒓
+ 𝝀𝟐. 𝑿(𝒓) = 𝟎 (39) 

𝑿(𝑟) = 𝒁(𝑟) 𝒓⁄   ;   𝒂𝒏𝒅   𝝆 = 𝒓. 𝝀 
(40) 

𝝏𝟐𝒁(𝝆)

𝝏𝝆𝟐
+

𝟏

𝝆
.
𝝏𝒁(𝝆)

𝝏𝝆
+ 𝒁(𝝆) = 𝟎 (41) 

𝑿(𝝆) = 𝑨. 𝑱𝟎(𝝆) + 𝑩.𝒀𝟎(𝝆) (42) 

5.5. Condition on radius – null increase of pore 

pressure after Ld.a  

At a distance of Ld.a  the increase of pore pressure 

given by the pressuremeter is null. This condition gives 

the Eq. (43), with the variable Eq. (44). But Eq. (42) can 

be rewritten as Eq. (45) with the new inner constant  Eq. 

(46) which depends on J0(d) and Y0(d). The inner 

coefficient  is now known Eq. (46) through the known 

values of 𝑱𝟎(𝝆𝒅)   

and 𝒀𝟎(𝝆𝒅). 

𝑿(𝑳𝒅. 𝒂) = 𝟎 (43) 

𝝆𝒅 = 𝝀 . 𝑳𝒅. 𝒂 = 𝑳𝒅. 𝝆𝒂 (44) 

𝑿(𝑳𝒅. 𝒂) = 𝑨. [𝑱𝟎(𝝆𝒅) + 𝜶.𝒀𝟎(𝝆𝒅)] = 𝟎 (45) 

𝜶 = −
𝑱𝟎(𝝆𝒅)

𝒀𝟎(𝝆𝒅)
=

𝑩

𝑨
 (46) 

5.6. Condition on radius – imposed increase of 

pore pressure at radius a for t=0  

This condition impose 𝑋(𝑎) = 𝒖𝒘𝒊 which give Eq. 

(47) and the value of  A Eq. (48): 

𝑿(𝒂) = 𝑨. 𝑱𝟎(𝝆𝒂) + 𝑨.𝛼. 𝒀𝟎(𝝆𝒂) = 𝒖𝒘𝒊 (47) 

𝑨 =
𝒖𝒘𝒊

𝑱𝟎(𝝆𝒂) + 𝛼. 𝒀𝟎(𝝆𝒂)
 

(48) 

5.7. General solution of consolidation: 

The general solution of consolidation is now: 

𝒖𝒘(𝒓, 𝒕) = 𝑨. [𝑱𝟎(𝝆) + 𝛼. 𝒀𝟎(𝝆)]. 𝒆𝒙𝒑−𝝀𝟐.𝑪𝒉.𝒕 (49) 

6. Consolidation theory – validation 

6.1. Measurement of linear relation between the 

decrease of pore pressure and the time: 

At a given value of the radius, for instance r=a, the 

consolidation theory shows an exponential relation 

between the increase of pore pressure and the time of 

slope −𝝀𝟐. 𝒄𝒉 Eq. (37). This theoretical results is retrieved 

experimentally by the linear relation between the logarithm of 

the excess of pore pressure versus the time (Figure 8). It 

appears that the mean slope is constant for pressure lower 

than 100kPa and increase when p is higher. We interpret 

this evolution by the effect of a plastic behaviour which 

is not in the frame of our study. The mean value of the 

slope is shown in (Table 2). The other parameters are in 

(Table 1). 

 
Figure 8: Evolution of the increase of pore pressure along 

time for different values of loading 

6.2. Evolution of the pore pressure along the 

radius: 

For the Bransley clay specimen the evolution of the 

pore pressure along the radius is measured after 1min. 

(Anderson et al. 1987) and can be compared (Figure 9) 

with the results issued from the constant Bpres  theory,  and 

the results issued from the consolidation theory with 4 

different times of consolidation. It can be observed that 

either the Constant Bpres theory and the Consolidation 

theory fit quite well with the experimental results, but the 

consolidation theory presents an evolution more smoothy 

with no break point. Furthermore, it allows finding the 

pore pressure at different level of time. 

 
Figure 9: Evolution of the pore pressure along the radius for 

the test with p=30kPa/Min.  

6.3. Evolution of the pore pressure along the 

time: 

For the Bransley clay specimen (Anderson et al. 

1987) the evolution of the pore pressure along the radius 

is measured 15s. after the loading and with an holding 

time of 60s. (Figure 10)  or 120s. (Figure 11) and can be 

compared with the theoretical results issued from the 

consolidation theory.  On (Figure 10) and  (Figure 11) 

experimental results are in solid line while theoretical  
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Table 2 : Parameters used for the validation of the 

consolidation theory on the laboratory test (Anderson et al. 

1987) 

 p=10kPa/min p=30kPa/min 

Slope (kPa/s) 0.0137 ------ 

 

 
Figure 10: Evolution of the pore pressure along the radius 

for the test with p=10kPa 15s. after loading 30s., holding 

time  

 
Figure 11: Evolution of the pore pressure along the radius 

for the test with p=10kPa 15s. after loading, 120s. holding 

time  

 

ones are in dotted line. The evolution of the pore pressure 

is captured at the cavity wall for the two experiences, 

while the measurement at 30mm from the center is higher 

than the theoretical result at 60s of holding time, and the 

measurement at 55mm is also higher than the theory at 

120s. of holding time. But it appears that the main 

evolution of the pore pressure is retrieved by the theory. 

The parameters used are shown (Table 2), and the 

other parameters are in (Table 1). 

7. Conclusion 

In this study, we proposed two complementary 

approaches to analyze the evolution of pore pressure 

around the pressuremeter at varying distances from the 

borehole wall. The first approach is based on a constant 

Bₚres coefficient and assumes equilibrium of effective 

stresses; it provides a global distribution of pore pressure 

during loading. The second approach incorporates water 

flow governed by Darcy's law, effective stress 

equilibrium, and the non-linear elastic behavior of the 

soil; it enables accurate reproduction of experimental 

pore pressure values at different radial distances and 

consolidation times, which is not possible with previous 

models. At this stage of development, an additional 

condition is needed to determine the constant λ, so that 

the experimentally measured slope λ2ch can be used to 

identify the horizontal consolidation coefficient ch. 
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