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ABSTRACT  
The cylindrical cavity expansion problem is an important aspect of geotechnical engineering, with applications in 
tunneling, geothermal exploration, drilling activities, and underground construction. This study develops a closed-form 
analytical solution for the expansion of cylindrical cavities in rock masses modeled as elastic-plastic media using the 
Hoek-Brown (H-B) yield criterion. The solution uses the Lambert W function to express stress distributions, while strains 
are calculated based on a non-associated plastic flow rule. Key results include predictions for the yielding pressure, plastic 
zone extent, and stress profiles around the cavity. 
To validate the analytical model, pressuremeter tests were conducted in marls, providing experimental data for 
comparison. Finite element analyses (FEA) were also performed using PLAXIS 2D, with the Hoek-Brown criterion 
implemented to ensure consistency. Calibration of the numerical model confirmed the accuracy of the simulations for the 
cavity expansion process. 
A comparison of the analytical solution, experimental data, and numerical results shows good agreement, supporting the 
reliability of the proposed method. While some discrepancies are observed, particularly in the transition between elastic 
and plastic zones, the analytical approach offers a useful tool for predicting key parameters such as yielding pressure, 
stress distribution, and plastic zone extent. These results suggest that the analytical method can serve as an efficient 
alternative to numerical simulations in certain geotechnical applications, particularly when computational efficiency is 
desired. This study contributes to a deeper understanding of cavity expansion mechanics in rock masses and provides 
practical insights for the design and analysis of underground structures. 

RESUME 
Le problème de l'expansion de cavités cylindriques est crucial en ingénierie géotechnique, notamment pour le tunnelier, 
l'exploration géothermique, le forage et la construction souterraine. Cette étude propose une solution analytique pour 
l'expansion des cavités cylindriques dans des masses rocheuses modélisées comme des milieux élasto-plastiques selon le 
critère de Hoek-Brown. La solution utilise la fonction Lambert W pour exprimer les distributions de contraintes, tandis 
que les déformations sont calculées à l’aide d’une règle de flux plastique non associée. Les principaux résultats incluent 
la prédiction de la pression de rupture, l'étendue de la zone plastique et les profils de contraintes autour de la cavité. 
Afin de valider le modèle, des essais de pressiomètre ont été réalisés dans des marnes, fournissant des données pour la 
comparaison. Des simulations par éléments finis (PLAXIS 2D) ont également été effectuées, intégrant le critère de Hoek-
Brown. La calibration du modèle numérique a confirmé la précision des simulations. 
Les comparaisons entre la solution analytique, les données expérimentales et les résultats numériques montrent une bonne 
cohérence, validant la méthode proposée. Bien que des divergences existent dans la transition entre zones élastiques et 
plastiques, l’approche analytique permet de prédire des paramètres clés comme la pression de rupture et la zone plastique. 
Cette méthode représente une alternative efficace aux simulations numériques, surtout lorsque l’efficacité de calcul est 
nécessaire, et offre des perspectives pour la conception des structures souterraines. 
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1. Introduction 
Cavity expansion theory plays a fundamental role in 

geotechnical engineering for modeling stress and 
deformation around expanding voids. Initially developed 
for soils to study pile installation and bearing capacity 
(Vesic, 1972; Carter et al., 1986; Randolph et al., 1994), 
it has since been extended to rock mechanics for 
applications in tunneling, drilling, and underground 
construction. 

In rock masses, the Hoek-Brown (H-B) failure 
criterion (Hoek & Brown, 1980) provides a realistic 
description of nonlinear strength behavior. However, few 
analytical cavity expansion solutions have been 
developed using this criterion due to its complexity. 
Carranza-Torres (1998) analyzed circular tunnels using a 
Tresca yield criterion, and Wang & Yin (2011) derived 
solutions for spherical cavities under Mohr-Coulomb and 
Hoek-Brown models, but no general closed-form 
solution for cylindrical expansion in H-B media has been 
widely adopted. 

This study addresses that gap by proposing a closed-
form analytical solution for cylindrical cavity expansion 
in Hoek-Brown media, incorporating a non-associated 
plastic flow rule. The solution is expressed using the 
Lambert W function and is validated through 
pressuremeter tests in marls and numerical simulations 
using PLAXIS 2D. The approach offers an efficient tool 
for evaluating yielding pressure, stress distribution, and 
plastic zone extent in rock engineering problems. 

2. Analytical solution for cylindrical 
cavity expansion in Hoek-Brown rock  

2.1. Hoek-Brown failure criterion 

The Hoek-Brown failure criterion is widely accepted 
for rock masses and has been applied in a large number 
of projects around the world. Hoek and Brown (1980, 
1988) introduced their failure criterion with a view to 
provide input data to analyses required for the design of 
underground excavations in hard rock. The criterion was 
derived from a combination of results of research on the 
brittle failure of intact rock conducted by Hoek and on 
model studies of jointed rock mass behaviour conducted 
by Brown. The criterion started from the properties of 
intact rock, incorporating factors to reduce these 
properties when considering characteristics of joints 
affecting the rock mass. Based essentially on the results 
of triaxial compression testing, the Hoek-Brown yield 
criterion can be expressed in terms of principal stresses 
using rock materials constants as follows: 

 

𝜎𝜎1 = 𝜎𝜎3 + 𝜎𝜎𝑐𝑐𝑐𝑐 �𝑚𝑚𝑏𝑏
𝜎𝜎3

𝜎𝜎𝑐𝑐𝑐𝑐
+ 𝑠𝑠�

𝛼𝛼
   (1) 

 
 

 

 

             

where 
• σ1 and σ3 are respectively the major and 

minor effective principal compressive 
stresses 

• σci is the unconfined compressive 
strength of the intact rock 

• mb is the reduced value of the material 
constant mi 

• mi, α, and s are material constants which 
can be expressed as functions of the 
geotechnical strength index (GSI) and 
the disturbance factor (D) as follows: 

𝑚𝑚𝑏𝑏 = 𝑚𝑚𝑖𝑖𝑒𝑒
�𝐺𝐺𝐺𝐺𝐺𝐺−100

28−14𝐷𝐷 � 
(2a) 

𝑠𝑠 = 𝑒𝑒�𝐺𝐺𝐺𝐺𝐺𝐺−100
9−3𝐷𝐷 � 

(2b) 

𝛼𝛼 =
1
2 +

1
6

�𝑒𝑒
−𝐺𝐺𝐺𝐺𝐺𝐺

15 − 𝑒𝑒
−100

15 � (2c) 

           
It can be noted that s=1 for the case of intact rock and 
that the value of α does not differ much from 0,5, the 
value suggested for the intact rock. 

The Geological Strength Index (GSI), introduced by 
Hoek (1994), Hoek et al. (1995), and Marinos et al. 
(2005) provides a measure of the rock mass, when 
combined with the intact rock properties, can be used for 
estimating the reduction in rock mass strength. The 
disturbance factor D depends upon the degree of 
disturbance to which the rock mass has been subjected as 
a result of the execution or breaking up process. The 
value of this parameter is based on existing damage due 
to blasting or disturbance. It varies from 0 for undisturbed 
in situ rock masses to 1 for very disturbed rock masses. 
Guidelines for the selection of D are discussed in a later 
section 

2.2. Problem statement 

The wall of an infinitely long cylindrical cavity with 
radius r0 in a homogeneous infinite rock mass is subjected 
to an internal pressure P. The medium is initially 
isotropic and subjected to a hydrostatic stress σ0. The 
problem geometry and boundary conditions are depicted 
in Fig. 1 where a cylindrical coordinate system is 
adopted. Because of axial symmetry, the problem is 
reduced to a plane strain problem that can be fully 
depicted using a single radial coordinate ‘r’.  
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Figure 1. Cylindrical cavity expansion in rock mass. 

The boundary conditions are expressed by the following 
equation:  

𝜎𝜎𝑟𝑟(𝑟𝑟 = ∞) = 𝜎𝜎0                                   (3a) 

𝜎𝜎𝑟𝑟(𝑟𝑟 = 𝑟𝑟0) = 𝑃𝑃                          (3b) 
 

 
Under the expansion of the cylindrical cavity, the 

major principal stress is the radial stress σr while the 
minor principal stress is the circumferential stress σθ. For 
the case of α =0,5, Eq. (1) becomes: 
 

𝜎𝜎𝑟𝑟(𝑟𝑟 = 𝑟𝑟0) = 𝑃𝑃             (4) 
 

The equilibrium equation for this problem in terms of 
radial and circumferential stresses can be expressed as 
follows: 
 

 𝜕𝜕𝜎𝜎𝑟𝑟
𝜕𝜕𝑟𝑟

+ 𝜎𝜎𝑟𝑟−𝜎𝜎𝜃𝜃
𝑟𝑟

= 0            (5) 
 

2.3. Analytical expression of yield pressure 

An infinite homogeneous and isotropic elastic rock 
medium is considered to assess the yielding pressure 
PYield defined as the internal pressure indexing the onset 
of plasticity within the medium. The elastic equilibrium 
conditions of the medium in the elastic domain subjected 
to an internal pressure P is given in terms of stresses by 
the following equations: 
 

𝜎𝜎𝑟𝑟 = 𝜎𝜎0 + (𝑃𝑃 − 𝜎𝜎0). �𝑟𝑟0
𝑟𝑟

�
2
      (6a) 

 

𝜎𝜎𝜃𝜃 = 𝜎𝜎0 − (𝑃𝑃 − 𝜎𝜎0). �𝑟𝑟0
𝑟𝑟

�
2
      (6b) 

 
It can be noted that the σr and σθ profiles are 

remarkably independent from the elastic parameters 
(Young's modulus E, Poisson's ratio ν). The yield 
pressure can be expressed by substituting Eq. (6) into Eq. 
(1): 
 
𝑃𝑃𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 = 𝜎𝜎0 + 𝜎𝜎𝑐𝑐𝑐𝑐

8
�−𝑚𝑚𝑏𝑏 + �𝑚𝑚𝑏𝑏

2 + 16𝑠𝑠 + 16𝑚𝑚𝑏𝑏
𝜎𝜎0
𝜎𝜎𝑐𝑐𝑐𝑐

�      (7) 

 
It can also be noted that the yield pressure is 

independent from the radius of the cavity and from any 

assumed elastic parameters provided the medium is 
initially homogeneous and isotropic. 

2.4. Stresses analysis 

The circumferential stress can be expressed as a 
function of radial stress using Eq. (1): 

 

𝜎𝜎𝜃𝜃 = 𝜎𝜎𝑟𝑟 +
𝜎𝜎𝑐𝑐𝑐𝑐

2
�𝑚𝑚𝑏𝑏 − �𝑚𝑚𝑏𝑏

2 + 4𝑠𝑠 + 4𝑚𝑚𝑏𝑏
𝜎𝜎𝑟𝑟

𝜎𝜎𝑐𝑐𝑐𝑐
� (8) 

     
The partial differential Eq. (5) can be bailed down in 

terms of σr to the following expression: 
 

𝜕𝜕𝜎𝜎𝑟𝑟

𝜕𝜕𝜕𝜕 −
𝜎𝜎𝑐𝑐𝑐𝑐

2. 𝑟𝑟
�𝑚𝑚𝑏𝑏 − �𝑚𝑚𝑏𝑏

2 + 4𝑠𝑠 + 4𝑚𝑚𝑏𝑏
𝜎𝜎𝑟𝑟

𝜎𝜎𝑐𝑐𝑐𝑐
� = 0 (9) 

    
The solution of the above partial differential equation 

satisfying the boundary conditions Eq. (3) can be 
expressed as function the radial distance: 
 

𝜎𝜎𝑟𝑟(𝑟𝑟) = − 𝜎𝜎𝑐𝑐𝑐𝑐
4𝑚𝑚𝑏𝑏

(𝑚𝑚𝑏𝑏
2 + 4𝑠𝑠 − 𝑚𝑚𝑏𝑏

2{1 + 𝜔𝜔(𝐴𝐴)}2)  
 

(10a) 
 

𝐴𝐴 = 𝐿𝐿𝐿𝐿 � 1
𝑚𝑚𝑏𝑏

� − �𝐶𝐶1 + 1 + 𝐿𝐿𝐿𝐿 � 𝑟𝑟
𝑟𝑟0

��  (10b) 

 
The Wright omega function ω(z) as introduced by Calmet 
et al. (2002), is a function of a complex variable z and is 
defined using the Lambert W function: 
 

𝜔𝜔(𝑧𝑧) = 𝑊𝑊𝑘𝑘(𝑧𝑧)(𝑒𝑒𝑧𝑧) 
 (11a) 

where the branch index k=k(z) is given by 
 

𝑘𝑘(𝑧𝑧) = �
𝐼𝐼𝐼𝐼(𝑧𝑧) − 𝜋𝜋

2𝜋𝜋
� (11b) 

 
 

Here, Wk(z) denotes the k-th branch of the Lambert 
W function, which satisfies (Corless et al. 1996): 
 

𝑊𝑊𝑘𝑘(𝑧𝑧). 𝑒𝑒𝑊𝑊𝑘𝑘(𝑧𝑧) = 𝑧𝑧    (12a) 
 

The W, the Lambert function, has an infinite number 
of branches, denoted Wk (k ∈ ). 
 

The ceiling function ⌈𝑋𝑋⌉ selects the correct branch k 
so that ω(z) is a well-defined, single-valued function 
across the complex plane. This ensures ω(z) uniquely 
solves: 

 
𝜔𝜔(𝑧𝑧) + 𝑙𝑙𝑙𝑙�𝜔𝜔(𝑧𝑧)� = 𝑧𝑧 (12b) 

 
 

For real values of z: Im(z) = 0, the index k=0 since 
⌈(Im(z) − 𝜋𝜋)/2𝜋𝜋⌉ = ⌈−1/2⌉ = 0, and thus: 

 
𝜔𝜔(𝑧𝑧) = 𝑊𝑊0(𝑒𝑒𝑧𝑧) 

 
  (12d) 
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The Wright Omega function is differentiable and 

satisfies the following equation: 
 

𝑑𝑑𝜔𝜔(𝑧𝑧)
𝑑𝑑𝑑𝑑 =

𝜔𝜔(𝑧𝑧)
1 + 𝜔𝜔(𝑧𝑧) 

(12-c) 

 

 
Figure 2. Wright Omega function. 

C1 is a constant that depends upon the boundary 
conditions. When applying an internal pressure equal to 
P, C1 can be expressed as follows: 
 

𝐶𝐶1 = −𝐿𝐿𝐿𝐿(−𝑚𝑚𝑏𝑏 + 𝐶𝐶2) −
𝐶𝐶2
𝑚𝑚𝑏𝑏

 

 
(13a) 

𝐶𝐶2 = �𝑚𝑚𝑏𝑏
2 + 4. 𝑠𝑠 + 𝑃𝑃.

4𝑚𝑚𝑏𝑏

𝜎𝜎𝑐𝑐𝑐𝑐
 (13b) 

 
The circumferential stress σθ in the plastic zone can 

be deduced based on Eq. (8). 
 

The elastic-plastic interface rp can be determined by 
explicitly solving the following equation: 
 

𝜎𝜎𝑟𝑟�𝑟𝑟𝑝𝑝� = 𝑃𝑃𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 (14) 
 
where PYield is given by Eq. (7) 
 

Finally, the plastic front rp can be expressed as a 
function of the initial radius of the cavity r0 by the 
following expression: 

𝑟𝑟𝑝𝑝 =
𝜎𝜎𝑐𝑐𝑐𝑐 . (𝑚𝑚𝑏𝑏 + 𝐶𝐶3). 𝑒𝑒−𝐶𝐶1− 𝐶𝐶3

𝑚𝑚𝑏𝑏

4. (𝑚𝑚𝑏𝑏 . 𝑃𝑃𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 + 𝑠𝑠. 𝜎𝜎𝑐𝑐𝑐𝑐)
𝑟𝑟0  

 
(15a) 

𝐶𝐶3 = �𝑚𝑚𝑏𝑏
2 + 𝑃𝑃𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 .

4𝑚𝑚𝑏𝑏

𝜎𝜎𝑐𝑐𝑐𝑐
+ 4. 𝑠𝑠 (15b) 

 

2.5. Displacement analysis 

The radial and circumferential strains are expressed 
by the following formula: 

 

𝜀𝜀𝑟𝑟 = −
𝜕𝜕𝑢𝑢𝑟𝑟

𝜕𝜕𝜕𝜕  (16a) 

𝜀𝜀𝜃𝜃 = −
𝑢𝑢𝑟𝑟

𝑟𝑟  (16b) 
 

where ur is the radial displacement 
 

Based on the classical theory of plasticity, the total 
strains are subdivided into their elastic and plastic 
components: 
 

𝜀𝜀𝑟𝑟 = 𝜀𝜀𝑟𝑟
𝑒𝑒 + 𝜀𝜀𝑟𝑟

𝑝𝑝   (17a) 
𝜀𝜀𝜃𝜃 = 𝜀𝜀𝜃𝜃

𝑒𝑒 + 𝜀𝜀𝜃𝜃
𝑝𝑝   (17b) 

 
Elastic strains can be expressed by the following 

equation: 

𝜀𝜀𝑟𝑟
𝑒𝑒 =

1 − 𝜈𝜈2

𝐸𝐸 �(𝜎𝜎𝑟𝑟 − 𝜎𝜎0) −
𝜈𝜈

1 − 𝜈𝜈
(𝜎𝜎𝜃𝜃 − 𝜎𝜎0)�   (18a) 

𝜀𝜀𝜃𝜃
𝑒𝑒 =

1 − 𝜈𝜈2

𝐸𝐸 �−
𝜈𝜈

1 − 𝜈𝜈
(𝜎𝜎𝑟𝑟 − 𝜎𝜎0) + (𝜎𝜎𝜃𝜃 − 𝜎𝜎0)�   (18b) 

 
 
where E and ν are respectively the Young’s modulus 

and the Poisson’s ratio. 
 
In order to evaluate displacements within the plastic 

zone, a plastic flow rule needs to be assumed. Adopting 
a non-associated flow rule, we obtain the following 
relationships between plastic strains, assuming that εz=0: 

 
𝜀𝜀𝑟𝑟

𝑝𝑝 + 𝛽𝛽. 𝛥𝛥𝜀𝜀𝜃𝜃
𝑝𝑝 = 0 

   (19a) 

𝛽𝛽 =
1 − 𝑠𝑠𝑠𝑠𝑠𝑠(𝜓𝜓)
1 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝜓𝜓)   (19b) 

 
where ψ is the dilatancy angle. 

 
Substituting equations Eqs. (16), (18), and (19) into 

Eq. (17), we obtain the following partial differential 
equation describing the radial displacement: 

 
𝜕𝜕𝑢𝑢𝑟𝑟

𝜕𝜕𝜕𝜕 + 𝛽𝛽
𝑢𝑢𝑟𝑟

𝑟𝑟 = 𝑔𝑔(𝑟𝑟)  (20) 

 
where: 

𝑔𝑔(𝑟𝑟) = −
1 + 𝜈𝜈

𝐸𝐸 �𝐶𝐶4(𝜎𝜎𝑟𝑟 − 𝜎𝜎0) + 𝐶𝐶5(𝜎𝜎𝜃𝜃 − 𝜎𝜎0)� (21a) 

𝐶𝐶4 = 1 − 𝜈𝜈 − 𝛽𝛽𝛽𝛽 (21b) 
𝐶𝐶5 = 𝛽𝛽 − 𝛽𝛽𝛽𝛽 − 𝜈𝜈 (21c) 

 
Finally, the radial displacement can be expressed by 

the following equation: 
 

𝑢𝑢𝑟𝑟(𝑟𝑟) = 𝑟𝑟−𝛽𝛽 �𝑟𝑟𝑝𝑝
𝛽𝛽 . 𝑢𝑢𝑟𝑟𝑟𝑟 + � 𝑥𝑥𝛽𝛽 . 𝑔𝑔(𝑥𝑥)𝑑𝑑𝑑𝑑

𝑟𝑟

𝑟𝑟𝑝𝑝

�   (22) 

 
where, rp is the plastic front position given by Eq. (15) 

while urp is the radial displacement at plastic front and is 
expressed by the following expression: 

𝑢𝑢𝑟𝑟𝑟𝑟 =
1

2𝐺𝐺
(𝑃𝑃𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 − 𝜎𝜎0)𝑟𝑟𝑝𝑝       (23) 

3. Numerical validation 
To validate the analytical solution for the expansion 

of a cylindrical cavity in a Hoek–Brown material (see 
Section 2), a comparison is conducted with numerical 
modeling using PLAXIS under axisymmetric conditions. 
The analysis considers different rock types, particularly 
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varying uniaxial compressive strengths (cf. Table 1). The 
comparison focuses on key mechanical responses, 
including the stress field, the extent of the plastic zone, 
and radial displacement. This approach ensures a 
comprehensive assessment of the analytical solution's 
accuracy in capturing the mechanical behavior of the 
rock mass under cavity expansion. 
 

Table 1. Basic Hoek-Brown parameters 
 Case 1 Case 2 Case 3 
σci (MPa) 20 40 60 
mi (-) 7 7 7 
GSI (-) 50 50 50 
D (-) 0,2 0,2 0,2 

 
Figures 3 to 5 show the comparison between 

analytical and numerical results for radial and 
circumferential stresses, under 1 MPa pressure and an 
initial cavity radius of 33 mm. Three cases are studied, 
with uniaxial compressive strengths of 20 MPa, 40 MPa, 
and 60 MPa (cf. Table 1). All other Hoek–Brown 
parameters remain unchanged. 

 

 
Figure 3. Radial stress comparison for a uniaxial 
compressive strength of 20 MPa (Case 1, Table 1). 
 

 
Figure 4. Radial stress comparison for a uniaxial 
compressive strength of 40 MPa (Case 2, Table 1). 
 

 
Figure 5. Radial stress comparison for a uniaxial 
compressive strength of 60 MPa (Case 3, Table 1). 
 

Figure 6 shows the evolution of the plastic zone 
('plastic front'), illustrated in red, calculated using finite 
element analysis (PLAXIS) for the three rock cases (see 
Table 1) and as a function of the applied pressure. 

 
 

 
Figure 6. Evolution of the Plastic Zone ('Plastic Front') 
Calculated by Finite Element Analysis (PLAXIS) for Different 
Rock Cases and Applied Pressure: (a) Case 1, (b) Case 2 and 
(c) Case 3. 
 

The graph in Figure 7 summarizes the results from 
Figure 5, comparing the analytical and finite element 
solutions in terms of the dimensionless plastic radius 
(RP/R0), with R0 = 33 mm. 

 

 
Figure 7. Comparison Between the Analytical Solution and 
Finite Element Calculation of the Plastic Front (Summary of 
Figure 6). 

4. Comparison with pressuremeter tests 
To validate the analytical solution for the expansion 

of a cylindrical cavity in a medium governed by the 
Hoek-Brown criterion, pressuremeter test results 
conducted in marls were analyzed. Marls, which are 
extensively distributed in southern Luxembourg and date 
back to the Triassic and Jurassic periods, exhibit a 
transitional behavior between soils and rigid rocks due to 
their mineralogical composition. 

Their widespread occurrence allows for the 
acquisition of a large dataset, while their deformable 
rock-like characteristics make them particularly suitable 
for assessing the analytical solution. These factors 
collectively justify their selection as the reference 
material for validation. 

For this analysis, a pressuremeter test in marl at 6 
meters depth was considered, with an initial borehole 
radius of 33 mm. (cf. Figure 8 and Figure 9). 
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Figure 8. Lithology and Depth of the Test, and Interpreted 
Pressuremeter Parameters. 

 

 
Figure 9. Evolution of the Central Cell Volume as a 
Function of Applied Pressure. 

 
The following graph presents a comparison of 

pressuremeter test results, expressed in terms of radial 
displacement as a function of the applied pressure. The 
radial displacement was computed from the volume 
increment using the relation Δr = ΔV / (2πr₀), starting 
from the initial contact point between the probe and the 
borehole wall (highlighted in red in Figure 8), and was 
subsequently compared with the analytical solution. 

To enhance the reliability of the interpretation, the 
pressuremeter test was numerically simulated using 
PLAXIS to calibrate the Hoek-Brown parameters, with a 
specific focus on the Geological Strength Index (GSI).  

The calibrated Hoek-Brown parameters for the marl 
rock mass were determined as: σci = 25 MPa, mi = 7, 
GSI = 40, and D = 0. These values were subsequently 
used in the analytical solution for further validation 
(cf. Figure 10). 

 

 
Figure 10. Comparison of Radial Displacement from the 
Pressuremeter Test and the Analytical Solution as a Function 
of Applied Pressure 
 

This integrated approach, combining analytical 
solutions, numerical simulations, and experimental data, 
supports a reliable calibration method to identify Hoek-
Brown parameters from pressuremeter tests. It 
demonstrates that in situ testing, when combined with 
appropriate calibration, can effectively provide accurate 
parameters and enhance the precision of geomechanical 
models for rock masses. 

5. Conclusions 
An analytical solution incorporating the Lambert W 

function was formulated to investigate the elastoplastic 
behavior of cylindrical cavity expansion in rock masses 
governed by the generalized Hoek-Brown (H-B) yield 
criterion. This solution provides explicit expressions for 
yielding pressure, plastic zone extent, stress distribution, 
and radial displacements, offering a rigorous framework 
for characterizing rock deformation under expansion 
loading. 

To validate the proposed approach, numerical 
simulations were conducted using PLAXIS across 
various rock types. The results exhibited strong 
agreement between analytical predictions and numerical 
outcomes, particularly in terms of stress distribution, 
plastic zone development, and radial displacement 
profiles, reinforcing the robustness of the model. 

Further verification was performed through 
comparison with pressuremeter test data, demonstrating 
a satisfactory level of consistency between analytical and 
experimental results. As part of ongoing research, 
additional comparisons will be carried out using an 
expanded dataset of pressuremeter tests on weak to low-
strength rock formations. The overarching objective of 
this study is to establish a robust analytical calibration 
methodology for deriving Hoek-Brown parameters 
directly from pressuremeter test data, thereby improving 
the accuracy and applicability of geomechanical 
modeling in rock engineering. 
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