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ABSTRACT 

The first commercially available pressuremeter test was developed by Louis Ménard in the late 1950s and 

was very successful in certain circumstances as a tool for foundation design. The Ménard method is a 

combination of pressuremeter specific measurements and empirical correlations. As early as 1961 it was 

realised that the same field data could be interpreted using basic mechanics, so that the test can be expressed 

as soil parameters for strength and limit pressure without the need for empiricism. Furthermore, if the 

resolution of the equipment was increased, it was possible to measure the sub-yield response of the material, 

assuming that probe itself could be introduced into the ground without significant alteration to the initial stress 

state. The self-boring pressuremeter was developed in the early 1970‘s to achieve these goals. There have been 

substantial advances in equipment, techniques and analysis since then, and this paper describes the current 

situation. The one property of the ground that the high resolution pressuremeter can provide in a repeatable 

manner without difficulty is shear modulus and the variation of modulus with strain and stress. This ability is 

now becoming widely acknowledged and is fundamental to the application of pressuremeter data.  

RESUME 

Le premier essai pressiométrique commercialisé a été développé par Louis Ménard à la fin des années 1950 

et s'est avéré très efficace dans certaines circonstances comme outil de conception de fondations. La méthode 

Ménard combine des mesures pressiométriques spécifiques et des corrélations empiriques. Dès 1961, on a 

réalisé que les mêmes données de terrain pouvaient être interprétées à l'aide de la mécanique de base, 

permettant ainsi d'exprimer l'essai sous forme de paramètres de résistance et de pression limite du sol sans 

recours à l'empirisme. De plus, en augmentant la résolution de l'équipement, il était possible de mesurer la 

réponse sous-seuil de rupture du matériau, à condition que la sonde puisse être introduite dans le sol sans 

modification significative de l'état de contrainte initial. Le pressiomètre autoforeur a été développé au début 

des années 1970 pour atteindre ces objectifs. Depuis, des progrès considérables ont été réalisés en matière 

d'équipement, de techniques et d'analyse, et cet article décrit la situation actuelle. La seule propriété du sol 

que le pressiomètre haute résolution peut fournir de manière reproductible et sans difficulté est le module de 

cisaillement et sa variation en fonction de la déformation et de la contrainte. Cette capacité est désormais 

largement reconnue et est fondamentale pour l’application des données pressiométriques. 
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1. Introduction

It is a curiosity that the best-known solution for the

cavity expansion test (Gibson & Anderson, 1961) is an 

adaptation of an earlier solution (Bishop, Hill & Mott, 

1945) that precedes by several years the first commercial 

pressuremeter. The earlier paper solves the problem of a 

cylindrical punch driven into a ductile material and in 

particular derives a limit pressure.  

Empirically at least, this concept had been 

appreciated in the maritime world for at least 200 years. 

The cannon (Fig.1) is a physical representation of a 

cavity expansion, with dimensions and the charge 

arranged to remain within the elastic range of the material 

from which it is constructed. Exceed the elastic range and 

the cannon may explode. Making the barrel thicker will 

not allow a more powerful charge to be used. This can 

only be done by using stiffer material, iron or steel 

instead of bronze.  

1.1. The Menard system 

Gibson & Anderson illustrate their solution using data 

obtained from a Ménard pressuremeter test (Fig. 3). This 

device had been in commercial use since about 1957. 

Louis Ménard (1933-1978) was a brilliant French 

engineer who had developed a pre-bored expanding 

pressuremeter system. His “Pressuremeter” (MPM) used 

a rubber membrane to load the borehole wall (Fig. 2)  and 
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measured three parameters – a limit pressure, a creep 

pressure and a modulus. For the time it showed an 

innovative appreciation of the behaviour of soil.  

 

What Ménard observed is that the displacement/ 

pressure curve was distinctly non-linear and the pressure 

tended to a steady state limit. Hence, working backwards, 

there was a relationship between this limit and the 

strength of the soil.  

The second observation was that after contacting the 

cavity wall the initial part of the pressure expansion curve 

had an extended linear portion. The slope of this gave a 

modulus related to the stiffness of the ground. 

The third observation was “creep pressure.” As a 

consequence of the method of applying pressure and the 

need to write the values by hand, he observed that there 

was a pattern in the amount of movement (creep) between 

successive steps of pressure (Fig. 3) 

Although there have been some refinements to the 

equipment, this remains the basis of the Ménard method. 

It is an empirical approach with some analytical 

background. The probe itself has no active parts. The 

parameters produced are specific to the method and are 

not fundamental soil properties. Nevertheless it has been 

shown by many that these parameters can be related to 

the field performance of simple structures. 

1.2. Self boring 

The best known self-boring system was developed at 

Cambridge University (CU) in the early 1970s by John 

Hughes and his supervisor Peter Wroth. The initial 

intention was to use the self-boring method to place a 

sensitive load cell in the ground. As the external pressure 

acted on the cell, a feed back system raised the internal 

pressure to prevent the load cell deflecting. When 

equilibrium was achieved, this gave the insitu lateral 

stress, assuming perfect placement. Fig. 4 is a later 

example of this procedure, Fig. 5 shows the probe and its 

control system, Fig. 6 is a schematic of one section 

showing the three types of transducer employed. 

Due to the time taken to perform the test, the Load 

Cell Pressuremeter (LCPM) has been used primarily for 

research. Fig. 4 shows the system output whilst it is being 

drilled in (first hour), allowed to settle (1 to 21 hours) 

then responding as the control system is turned on and 

raises the internal pressure. The derived external stress is 

the sum of the internal pressure and any residual output 

from the load cell. Assuming that this combined total 

represents the insitu lateral stress σho, the coefficient of 

earth pressure at rest, 𝑘0, is 1.2 for this example.  

Hughes then considered a self-boring expansion 

pressuremeter with the potential for obtaining the full 

stress-strain curve for the material in addition to the insitu 

stress. Adapting an MPM was considered but rejected, 

partly due to the comparatively low resolution of the 

MPM system. To put this in context, for a typical soil, all 

Figure 1. 19C cannon outside Ely Cathedral 

Figure 2.  The Ménard system 

Figure 3.   Annotated MPM curve 

Figure 4.   LCPM test in very stiff clay 



 

3 

 

the sub-yield information is contained in the first 1% 

shear strain of the expansion and so would barely register 

in an MPM test, where 1% is a change of 7cm3 for the 

original MPM. 

 

CU had developed a system of taking x-ray 

photographs of soil samples loaded with strategically 

placed lead shot. This technique was used to prove the 

potential of the self-boring method. It also proved that 

radial displacement at the centre of an expanding 

membrane was insensitive to the membrane length and 

therefore representative of a cylindrical cavity expansion. 

Fig. 7 is an example (overdrawn, as the original 

photograph does not reproduce well).  

The Cambridge Self Boring Pressuremeter (SBP) is 

built around a 51mm diameter stainless steel tube with a 

6.4 mm wall thickness. It has been manufactured since 

1975 by Cambridge Insitu Ltd (CIL). Although there 

have been substantial changes the device retains many of 

the original features. It reads total pressure, pore water 

pressure, and radial displacement at six points equally 

spaced in the same plane. All measurements are made in 

the probe itself and since the early 1990s all signal 

conditioning including analogue to digital conversion is 

carried out within the body of the probe. In its original 

form the diameter was arranged to be the same (within a 

few micrometres) from the foot of the cutting shoe to the 

top end of the expanding section. 

Figure 5. Six axis self boring LCPM and controller 

Figure 6. Sketch of one section of the LCPM 

Figure 7.  Enhanced radiographic image of cavity 

expansion experiment 

Figure 8. The original self boring head 
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The self boring head is sketched in Fig.8. It uses a two 

part drill string. The outer part continues the 51mm 

diameter of the body of the probe. It carries downthrust 

but not rotation. The inner cutter drive rod (CDR) passes 

through the centre. It sees rotation but only mild torque, 

and also acts as a water line. The downthrust forces the 

internally tapered sharp shoe edge into the material. As 

soil enters the shoe space the rotating cutter breaks it 

down and the injected water transports the cuttings back 

to the surface. The return path is the annulus between the 

CDR and the inner wall of the outer tube. No water passes 

around the outside of the instrument. 

In the soils that it was designed for, soft clays and 

loose sands, the system works extraordinarily well. In 

practice it is frequently used in stiff clays and dense 

sands, and the current version of the SBP is necessarily  

more robust than the original tool.  In general the system 

is set-up to use a maximum downthrust equivalent to 

about 2 tonnes. There are alternative drill heads, 

including one capable of boring into weak rock. There is 

also a jetting system for material such as tailings that can 

be cut with water pressure alone. For this jetting system, 

rotation is not required and there is no inner rod other 

than a jetting lance through the centre of the SBP. A good 

self-bored test is capable of producing a field curve that 

shows very little obvious disturbance, potentially 

allowing insitu stress and strength data to be read directly 

from the measured data, the so-called ‘lift-off’ pressure 

(Fig. 9). 

The difficulty with data such as Fig. 9 is the implicit 

assumption that the disturbance caused to the ground is 

negligible. This is unsafe – disturbance must always be 

quantified.  

A more complete interpretation of the data in Fig. 9  

is given in Fig. 10, where the whole curve is used to find 

the parameter set that best represents what was measured. 

It is then possible to see that the so -called ‘lift-off’ value, 

the stress at which the cavity starts to expand, is an under-

estimate.  

In Fig. 9 and Fig. 10, 𝑃0 refers to the cavity reference 

pressure. It is a matter of engineering judgement whether 

this is also representative of the insitu lateral stress, 𝜎ℎ𝑜. 

The approach used to reconstruct the pressuremeter 

field curve in Fig. 10 is described in more detail later. 

However note that the value for 𝑃0 in Fig. 10 and external 

stress in Fig. 4 are in good agreement. The two borehole 

locations are only a few metres apart at the former 

Rectory Farm test site. 

A significant component of the development of the 

SBP and the family of pressuremeters often referred to as 

‘Cambridge’ is the realization that disturbance is always 

present. The test method is designed to quantify and erase 

it, allowing the undisturbed sub-yield response of the 

ground to be discovered.  Every co-ordinate of pressure-

displacement in the test is decided by the same set of soil 

parameters for strength, stiffness and the initial stress 

state. Viewed at in this way, it is easier to identify the 

elusive σho from the test as a whole rather than from direct 

observation.  

It has taken many years to develop the current testing 

methods. It required the arrival of cheap computing 

power and rapid sampling rates. The methods continue to 

evolve.  

This paper focuses on the development of the 

undrained solution for the self-bored test, because at the 

present time this is the most complete combination of 

analysis and synthesis. The drained case is presented 

more briefly. 

2. The stress-strain curve (undrained case) 

The pressuremeter field curve is the integration of the 

stress-strain response of the ground. Hence 

differentiating the field curve at any point gives the 

current mobilized stress. For the undrained case, Palmer 

(1972) relates shear stress τ to total pressure P and current 

cavity strain εc as follows: 

𝜏 =  𝜀𝑐(dP/d𝜀𝑐)   (1) 

This can be solved graphically, and prior to easy 

access to computers, was the solution of choice (Fig. 11). 

Eq. (1) is extremely powerful. It makes no 

assumptions about the form of the stress-strain curve. As 

a means of finding the current shear stress it is applicable 

to all parts of the pressuremeter curve provided that the 

relevant displacement origin for a particular event can be 

identified. In the example it is applied to the loading 

phase. It can also be applied to an unload/reload cycle or 

the final cavity unloading phase, assuming that the local 

origin when the direction of loading changes is defined. 

If the origin is inaccurate, so that strain is miscalculated,  

then the procedure will produce misleading shear stress 

Figure 9.  The first 0.5mm of an SBP test in stiff clay 

Figure 10.  Reconstructing the SBP test 



 

5 

 

values, but this is an effect that diminishes with distance 

from the assumed origin. 

Palmer (1972) is a numerical solution. Gibson & 

Anderson (1961) is a closed form solution. It assumes the 

shape of the stress-strain response and solves the 

boundary problem (Eq. (2)). The assumption is that the 

ground deforms in a linear elastic manner until the shear 

stress at failure is achieved. Thereafter the response is 

perfectly plastic.  

This is an unrealistic description of soil behaviour and 

the next level of sophistication is to propose that below 

yield the ground response is non-linear, with the 

assumption of perfect plasticity retained (Fig. 12). The 

undrained solution for this case is given by Bolton & 

Whittle (1999). Refer to Eq. (3).  

 

Pc = Po + cu[1 − loge(cu G⁄ ) + loge(∆A A⁄ )]  (2) 

Pc = Po + cu[1 β⁄ − loge(cu Gye⁄ ) +  loge(∆A A⁄ )] (3) 

 

All terms are defined in Table 1. Eq. (3) has been used 

to create the modelled data in Fig. 10. Both eq. (2) and 

eq. (3) can be applied graphically to find the limit 

pressure PL of the ground when ΔA/A = 1.  

Houlsby & Withers (1988) and Jefferies (1988) both 

give solutions for an undrained linear elastic/perfectly 

plastic cavity contraction. The non-linear version of these 

is given by Whittle (1999) and the plastic phase can be 

written as follows: 

Pc = Pmx − 2𝑐𝑢 𝛽⁄ − 2cu loge[ycc/yyc] (4) 

The exponent of non-linearity β appears in both 

equations (3) and (4). Its derivation and how it is obtained 

is now described. 

3. Shear modulus 

A compelling argument for the high resolution 

pressuremeter test (regardless of the insertion method or 

probe type) is the ability to determine the sub-yield 

response of the ground in a repeatable manner. This is 

done using small cycles of unloading and reloading. Fig. 

11 is an example of an SBP test in clay and Fig. 13 is an 

example of an over-water  pre-bored test in silty sand. 

This test has 4 cycles taken whilst the cavity is 

expanding, each very similar to the others. Early 

argument for this technique assumed a linear response  

but as the inset shows, the unload/reload event has a 

hysteretic appearance. This is due to the non-linear nature 

of soil stiffness at strains below the yield condition.  

For comparison purposes the pseudo-elastic response, 

directly equivalent to the part of the MPM curve used to 

calculate EM in Fig. 3, is also shown. It is apparent that 

the initial slope is dominated by the consequences of 

pocket preparation with the subsequent relaxation, and is 

unrepresentative of the true shear stiffness.  

Fig. 14 is an annotated example of a real cycle with 

some of these features brought out. 

Fig . 14 shows that the unloading and reloading data 

are equivalent to each other. Because the unloading is 

affected by creep from the preceding expansion, origin 

[A] is less certain than origin [B], where the cycle turns 

around. If secants are drawn from origin [B] to touch the 

Figure 11. The sub-tangent analysis for shear stress 

Figure 12.  Assumed stress-strain response 

Figure 13. A pre-bored test in silty sand (over-water) 

Figure 14. Annotated unload/reload cycle 
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reloading envelope then each would give a different 

strain dependent value for shear modulus. It is 

straightforward to calculate the shear strain and the 

change of radial stress for each of the data points in the 

reloading path. Bolton & Whittle (1999) show that this 

response is accurately represented by a power curve (Fig. 

15). 

The data are plotted in radial stress – shear strain 

space and need to be converted to shear stress-shear strain 

values. This can be done by adapting the Palmer (1972) 

result given by equ. (1): 

𝜏 =  γ(dP/dγ)  (5) 

The power law result is: 

P =  η𝛾𝛽  (6) 

Hence: 

𝜏 =  ηβ𝛾𝛽  (7) 

Bolton and Whittle refer to ηβ as α and call it the 

shear stress constant. Shear modulus is the derivative of 

shear stress, so secant shear modulus is given by: 

Gs  =  αγ
β−1

   (8) 

 

β takes a value between 0.5 and 1, where 1 is linear 

elastic. 

Fig. 16 shows three cycles from a test in London Clay 

plotted as stiffness-decay curves: 

The lines in Fig. 16 are the power law trends plotted 

between arbitrary shear strains 0.01% and 1%. All cycles 

give the same response because following undrained 

yield, the mean effective stress at the cavity wall is 

constant. The data points come from applying the sub-

tangent analysis described by Fig. 11 directly to the data 

points from the reloading path of each cycle. Directly 

differentiated experimental data is affected by small 

measurement uncertainties but the results clearly follow 

the same trend as the power curves. 

There are two limitations for the wider application of 

shear modulus determined in this way. One is the 

direction of loading. The ground is sheared horizontally 

and responds with horizontal movement (assuming a 

vertical borehole) so the test produces GHH modulus 

parameters. In an over-consolidated clay these are 

generally higher than GVH values from other test 

methods. The second limitation is the vagueness of the 

very small strain data. This is not a resolution but a 

control issue. Within a cavity expansion test it is difficult 

to arrange for miniscule pressure changes when 

following the unload/reload event. Hence the usual 

practice is not to quote shear modulus parameters for 

shear strains smaller than 10-4.  

4. Curve modelling 

Modelling the experimental data is the process of 

finding the parameter set that best represents the 

measured field curve. Potentially there are multiple 

solutions but the method outlined by Whittle (1999) is 

constrained by the values for shear strength obtained 

from the loading and contraction, and the non-linear 

stiffness parameters α and β. The only uncertainty is the 

cavity reference pressure, P0. 

In addition to the plastic equations (3) and (4), two 

further equations describing the sub-yield response are 

required. For the loading case, the total pressure at the 

cavity wall is given by: 

P = P0 + (
α

β
) (𝛾)β  (8) 

This applies until P = P0 + cu β⁄ . 

For the cavity contraction sub-yield response, total 

pressure at the cavity wall is given by: 

P = Pmx − (
α

β
) (𝛾)β  (9) 

This applies until P = Pmx − 2cu β⁄ . Pmx is the 

maximum pressure at the cavity wall achieved during 

the loading phase. 

4.1. Undrained model assumptions 

• It is an assumption that strength is the same 

whether loading or unloading. 

• Because the start of the contraction is known, 

shear strength derived from this phase of the test 

is the best estimate. 

• If the loading value for strength does not accord 

with the unloading value then the strain origin for 

the expansion is moved left or right until the 

condition is satisfied.  

• Adjustment means a small alteration of the initial 

cavity radius as a means of compensating for 

insertion disturbance. For a self bored test with 

disturbance in the sub-yield range this will be an 

offset less than ±0.2mm. For a pre-bored test it 

may be several millimetres. 

Figure 15.  Deriving the non-linear parameters 

Figure 16.  Stiffness decay curves, undrained test  
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• Having made the shear strengths agree, the final 

step is to set P0 for best fit (Fig. 17). The model is 

sensitive to quite small variations of P0. 

 

4.2.  Limitations of the undrained model 

The undrained model is straightforward to apply and 

in principle has minimal uncertainty because the 

parameters are constrained by the shear modulus results. 

These are repeatable measurements that apply no matter 

how far the cavity has been expanded (Fig. 13). A pre-

bored or pushed device such as a Full Displacement 

Pressuremeter (FDPM) will give similar results to the 

best self-bored test.  

However there are undrained tests that the model will 

not fully describe. Typically, these are: 

• Materials that have a true peak in the shear stress-

shear strain curve, so not perfectly plastic. 

• Normally consolidated clays. Here the problem is 

that at some point in the cavity contraction the 

vertical stress becomes the major stress, so 

deriving strength from the contraction becomes 

uncertain. 

 

Indicating when the material is not a good match for 

the model is an essential contribution to the 

understanding of the ground response. 

5. Drained Interpretation 

A limited solution for the frictional response of the 

ground under drained conditions is given by Gibson & 

Anderson (1961). This assumes constant volume 

deformation. Hughes et al (1977) is a solution that 

accounts for volumetric strains and the adopted 

methodology is  the basis for subsequent closed form 

solutions. Carter et al  (1986) includes drained cohesion 

and elastic strains in the plastic region. Houlsby et al 

(1987) and Withers et al (1989) give solutions for cavity 

contraction. Manassero (1988) is a numerical solution for 

the frictional response of drained cavity expansions and 

this can be extended to cavity contraction (Whittle & 

Byrne, 2020).  

 The closed form solutions assume that the internal 

angle of friction remains constant, which is 

approximately the case for an SBP with its limited range. 

A log-log plot of effective radial stress against cavity 

strain gives an ultimate slope whose gradient can be 

converted to friction and dilation angles using Rowe’s 

theorem of dilatancy (Fig. 19). This is a reasonable 

assumption for a cavity expansion in medium to dense 

sands but the peak behaviour during a cavity contraction 

is usually not sustained for more than a small strain 

reduction. Modelling the drained ground response in an 

analogous manner to the undrained case is therefore less 

satisfactory.  

A second difficulty is that constraining the model 

with high quality stiffness data needs to take account of 

the stress dependency as well as the strain dependency. 

Unlike the undrained case, the mean effective stress 

increases during a drained cavity expansion so the 

Figure 17.  Sensitivity of model to Po variation 

Figure 18.  SBP test in medium dense sand 

Figure 19.  Finding the friction angle 

Figure 20.  Stiffness degradation with stress dependency 
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coincidence of stiffness data seen in Fig. 16 no longer 

applies. Fig. 20 is an example, using data from the 

unload/reload cycles shown in Fig. 18. 

There are techniques that allow the stiffness response 

at a specific value of mean effective stress to be identified 

(for example Bellotti et al, 1989). Generally the first 

cycle in a test such as that in Fig. 18 is likely to be 

reasonably close to the value at the first yield state.  

5.1. Drained equations for curve modelling 

The following equations follow the same format as 

the undrained case. Plastic expansion in a c′- ϕ′ material: 

Pc
′ = (Pf

′ + c′ cot ϕ′)  [
εc

εip(1+sin ψ)
+ (

sin ψ

(1+sin ψ)
)]

S

−

 c′ cot ϕ′ (10) 

Pf
′  and εip are the effective radial stress and cavity 

strain at first yield. For a material with a non-linear 

response prior to yield they are defined as follows: 

Pc
′ = Pf

′ = Po
′ + (

(po
′ sinϕ+c′cosϕ)

β(1+sinϕ)−sinϕ
)  (11) 

εip = (
Pf

′−Po
′

αr
)

1

β
   (12) 

The curve modelling is in radial stress/cavity strain 

space and the stiffness data needs to be adapted to suit. 

αr is calculated from the shear stress constant α: 

 αr = 10
(log 

α

β
 +β log 2)

  (13) 

 It follows that below yield, the effective radial stress 

at the cavity wall is given by: 

Pc
′ = P0

′ + αr(εc)β   (14) 

Perfectly plastic contraction, incorporating drained 

cohesion, is given by: 

P′
c = (P′

fu + c′ cot ϕ′) [Ac  (
εmx−εc

εipu
) − Bc ]

sul

−

 c′ cot ϕ′ (15) 

Ac  and Bc  are two constants defined in Table 1. p′
fu

 

and εipu are the yield stress and strain in contraction. The 

non-linear sub-yield response is : 

Pc
′ = Pmx

′ − αru(εmx − εc)β  (16) 

This applies until yield in contraction: 

Pc
′ = Pfu

′ = Pmx
′ − (

2(Pmx
′ sinϕ−c′cosϕ)

β(1−sinϕ)+2sinϕ
)  (17) 

The cavity strain at the yield state will be: 

εc = εipu = εmx − (
Pmx

′ −Pfu
′

αru
)

1

β
  (18) 

 

If the material deformation is purely frictional and 

the response is linear elastic up to yield then all these 

equations revert to published solutions. Equation (10) 

can be derived from Hughes et al (1977) and equ. (15) 

becomes that of Withers et al (1989). 

Fig.21 is an example of the model used in a medium 

dense sand without cohesion. This is the same test 

shown in Fig. 19 and Fig. 20.  

Fig. 22 is an example of a test conducted in a 

tailings dam. The results indicate that the material has a 

small amount of cohesion and because it lies close to the 

critical state is potentially liquefiable.  

 

 

5.2. Determining the drained shear modulus at 

yield 

The drained curve model (Fig. 21 and Fig. 22) uses 

two values for shear modulus, applicable to the first yield 

and yield when the cavity is contracting. What is required 

from the unload/reload cycles is a description of how 

shear modulus develops with strain and stress level.  

The cycles are initiated at a measured value of 

effective radial stress at the cavity wall, Pc
′. This is 

converted to mean effective stress 𝜎𝑎𝑣
′  by the following: 

𝜎𝑎𝑣
′ =  Pc

′ (1 + sin 𝜙′)⁄   (19) 

Here, 𝜙′ is the peak angle of internal friction decided 

by use of the Hughes et al 1977 analysis (Fig. 19). There 

are more sophisticated versions of equ. (19) but for the 

purposes of the model, it is sufficient. 

Each cycle produces a pair of α and β parameters. 

Select a value of shear strain (0.3% is the model default 

value) then plot the resulting secant shear modulus 

against 𝜎𝑎𝑣
′ . Fig. 23 is an example, for three strain levels. 

Usually it is necessary to use log scales to linearize the 

data but for this example linear scales give the best 

correlation coefficients.  

Fig. 23 illustrates that for a given strain and stress, the 

shear modulus can be predicted from the unload/reload 

response. The particular values required for modelling 

are the mean effective stress and strain when the material 

reaches the yield condition, both in expansion and 

contraction. When the model is being used, the yield co-

Figure 21.  The sand model (purely frictional) 

Figure 22. The drained model, friction and cohesion  
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ordinates will change and so the required shear modulus 

values will be re-calculated after every adjustment. 

Each unload/reload cycle can only give one value for 

the relevant mean effective stress. The drained test shown 

in Fig. 18 has 4 cycles to give the stiffness-stress 

derivations a reasonable level of credibility. For the 

undrained case, 2 cycles would be sufficient. 

The process is slightly simplified for the contraction; 

provided that the stress reductions are within the sub-

yield range, the value of mean effective stress is that 

which existed at the moment the cavity contraction 

began. Therefore it is only necessary to find the cavity 

contraction yield strain in order to calculate the required 

shear modulus. 

5.3. Using creep data to identify Po. 

Hoopes and Hughes (2013) suggest that creep 

displacement readings taken during the cavity 

contraction phase of the test may indicate the cavity 

reference pressure 𝑃0 . Their paper was concerned with 

undrained tests in clay but a similar argument can be 

made for drained tests.  

The concept is that creep displacements will be a  

minimum when the pressure applied at the cavity wall 

matches the geostatic stress. In Fig. 22 the part of the final 

contraction between 900 and 400 kPa consists of small 

decrements of pressure, each held for 1 minute. Fig. 24 

plots the results as an absolute displacement and as a 

difference between successive steps. In this example it is 

the absolute movement that shows a clear deviation at 

576kPa. This is slightly more than the 𝑃0 derived from 

the drained modelling (Fig. 22) but is within 7%. The 

importance of this approach to determining 𝑃0 and by 

inference 𝜎ℎ𝑜 is that the cavity contraction phase of the 

test is independent of the probe insertion method, and 

hence a pre-bored or pushed pressuremeter is able to 

make reasonable estimates comparable with the self-

boring method. However the movements are very small 

so the ability to resolve micrometre changes is a pre-

requisite.  

5.4. Limitations of the drained model 

As with the undrained solution the greatest weakness 

of the model is the assumption of perfect plasticity. This 

is a particular difficulty with cavity contraction data, and 

so the model allows for the loading and contraction phase 

to have different angles of peak friction. This introduces 

a degree of freedom (and therefore uncertainty) in its 

application.  

Drained cohesion cannot be separately quantified by 

the analysis methods available, so it is an additional free 

parameter. However as the same value affects the loading 

and contraction phases of the test, identifying 

inappropriate cohesion parameters is not difficult.  

For both models the one fixed parameter is stiffness. 

Because for the drained case stiffness is stress as well as 

strain dependent, the software that implements the model 

uses an iterative approach. When the strength 

components of the calculated curve are altered this 

changes the mean effective stress at yield and the 

pertinent shear modulus is then recalculated. Accurate 

calculation depends on having several unload/reload 

cycles from the one test  to evaluate. 

6. Concluding remarks 

The purpose of this paper is to show how relatively 

simple but rigorous solutions for the cavity expansion test 

can be used to convert pressuremeter field curves to 

fundamental soil parameters. No pressuremeter specific 

parameters or empirical correlations are required. The 

data approached in this way uses the same engineering 

terminology and concepts as laboratory testing or finite 

element analysis. 

Confidence in the analysis process is achieved by 

showing how a set of parameters initially obtained by 

analysis recovers the measured field curve.  

Other solutions and approaches are available, and 

have been for some time. Ferreira and Robertson (1992), 

for example, give an undrained solution based on a 

hyperbolic stiffness degradation that requires the small 

Figure 24.  Cavity contraction creep 

Figure 23. Gs variation with strain and stress 
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strain shear modulus to be known. The primary 

advantage of the approach presented in this paper is the 

certainty of knowing the shear modulus at yield, and then 

working back to stiffness at smaller strains.  

Most of the examples are taken from self-bored tests 

but much of the methodology can be applied to more 

invasive techniques provided that high quality data are 

available for the sub-yield response of the ground 

obtained from unload/reload cycles.  

Unquestionably these methods are harder to apply 

than the Ménard method. The reward for persevering is a 

rich understanding of the nature of the ground, unlocking 

the predictive potential of the cavity expansion test. 

Figure 25 illustrates the difference. The MPM data are 

taken from Gibson & Anderson (1961). The SBP data are 

from the same location some years later.  

 

As far as strength is concerned, the two tests are 

showing similar results. The major difference is the 

absence of any sub-yield data in the MPM test. This is 

why the SBP remains such a powerful investigative tool. 
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Table 1. Nomenclature 

Symbols Description 

cu Undrained shear strength 

c' is drained cohesion 

Gye Secant shear modulus at first yield 

(expansion) 

Gyc Secant shear modulus at yield in contraction 

P Total pressure (radial stress at the cavity wall) 

Pc
′ is effective pressure at the cavity wall 

Po  is cavity reference pressure . 

Po
′ is effective cavity reference pressure . 

PL Total limit pressure for indefinite expansion 

PLM Ménard limit pressure (= PL− cu ln 2) 

Pmx Maximum expansion pressure at the end of 

loading. 

P′mx is the effective maximum expansion pressure  

Pf
′ 

Effective radial at the cavity wall when first 

yielding 

Pfu
′  

Effective radial at the cavity wall when 

yielding in contraction   

σ Stress. σho is the insitu horizontal stress. 

γ Shear strain 

𝛾𝑐𝑐  Shear strain in contraction 

γyc Shear strain at yield in contraction 

γye Shear strain at first yield 

A Area. ΔA/A is constant area ratio and is shear 

strain. 

α Shear stress constant. αr and αru are radial 

stress constants for loading and unloading 

respectively (drained tests). 

β Exponent of non-linearity, typically between 

0.5 and 1. 

Figure 25.  MPM and SBP compared 
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η Radial stress intercept in radial stress/shear 

strain space.  

V Volume.  

Vs Volume at the cavity origin. 

V1, V2 Volume at start and finish of pseudo-elastic 

phase. 

P1, P2 Pressure at start and finish of pseudo-elastic 

phase 

E Young’s modulus. 

EM Ménard modulus 

ε Strain – subscript c is cavity strain 

εip is circumferential yield strain when expanding  

εipu 
is circumferential yield strain when 

contracting 

εmx 
is the maximum cavity strain at the end of 

loading 

𝜏 Shear stress 

S  

Exponent of the drained plastic loading 

response. 

S =
(1 + sin ψ) sin ϕ′

1 + sin ϕ′
 

Sul 

Exponent of the drained plastic contraction 

response. 

Sul =
−2 sin ϕ′ (1 − sin ψ)

(1 − sin ϕ′)(1 + sin ϕ′ sin ψ)
 

ν is Poisson's ratio 

ϕ′  is angle of shearing resistance.  

ϕcv
′  

is the friction angle when the material is 

shearing at constant volume. 

ψ is dilation angle.  

M is  
(1+𝑠𝑖𝑛𝜓)

(1−𝑠𝑖𝑛𝜓)
  

N is  
(1+𝑠𝑖𝑛𝜙)

(1−𝑠𝑖𝑛𝜙)
 

Ac   Ac  = (NM + 1) (N + 1)⁄  

Bc Bc  = (NM − N) (N + 1)⁄  

 


